第五百三十一章 湍流中的一个关键定律(1/2)
什么是湍流?试着想象两幅画面,一幅是一条平静的河流,另一幅是奔流激起了白色浪花的河流——前者向一个方向流动,后者同时向多个不同方向流动。在数学和物理学中,后面这幅画面中所存在的不规则运动就被称为湍流。
湍流的运动能以多种不同的方式同时展开,因此在数学上对它们进行研究是极为困难的。也正因如此,描述流体流动的ns方程(纳维叶-斯托克斯方程)才会如此难以求解,它甚至被列为七个“千禧年大奖难题”之一,足以彰显它在数学上的困难程度。
1959年,一位名叫乔治·巴切勒(georgebatchelor)的数学家兼物理学家提出,某些湍流系统虽然看起来非常混乱,但它们实际上遵循着一种简单、精确的普遍规律。这便是与湍流有关的一个关键预测——巴切勒定律,它描述的是液体在混合时所形成的漩涡的大小和分布,是对当一种流体与另一种流体混合时,相同温度下的大尺度现象与小尺度现象之间的比率的预测。
巴切勒定律有助于解释化学浓度和温度如何在液体中分布,我们能在冷热混合的海水中的那些大小不同的旋涡里看到它的作用。
这样的现象在自然界中广泛存在,物理学家称之为“定律”,因为他们在实验室中已经对这种现象观察多年。
例如,将牛奶倒入咖啡搅拌时,可以产生一个大的漩涡,如果你放大看,会发现大旋涡上出现了小漩涡,小漩涡上会出现更小的旋涡……随着牛奶与咖啡的混合,漩涡也越来越小,每一层的细节均在发生变化,形成有点类似分形的复杂结构。
但这些结构并不完全与分形相同,因为这些小漩涡并不是大漩涡的完整“复制品”,每个小旋涡都可以有自己的旋转方向。
虽然从物理学的角度来看,这已经足以被称为定律,但数学家却无法对此满足,因为到目前为止还没有数学上的证据证明它是绝对成立的。直到最近,数学家jacobbedrossian、samuelpunshon-smith和alexblumenthal才首次证实了巴切勒定律的正确性,为描述液体中的运动模式提供了一种新的方法。
让我们以向一桶白色的油漆中倒入黑色油漆的过程为例:试想你每秒钟向一桶白色油漆内加入一滴黑色油漆,边加边搅拌。
当第一滴黑色油漆落在白色油漆上时,它就像一个孤岛一样,但过不了多久,随着搅拌的进行,它开始与白色油漆混合,拉长成越来越细的黑色纹路。随后被加进来的黑色油漆也将处于这种过程的不同阶段:被拉伸、拉长,最后融入到整体渐渐变灰的油漆中。
本章未完,点击下一页继续阅读。