第三百零九章 康托尔三分集(1/2)
1875年,亨利·约翰·斯蒂芬·史密斯发现了一个诡异的东西。
是位于一条线段上的一些点的集合,具有许多显著和深刻的性质。
后来1883年,又有康托尔开始对这个问题感兴趣。
史密斯说:“对于线上的点,我总觉里面有很多玄机,上面有很多深刻的道理。不能弄过去的数学去衡量。”
康托尔说:“我也有同感,而且我还有一个不错的模型。”
史密斯说:“说说看。”
康托尔说:“我发现一个三分点集。取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下两段,再将剩下的两段再分别三等分,各去掉中间一段,剩下更短的四段,……,将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,记为p。”
史密斯说:“这是一个无处稠密的完备集的例子。”
康托尔说:“其中有很多有趣的性质。”
史密斯说:“听你说的这个三分集,无穷多个点,所有的点处于非均匀分布状态。此点集具有自相似性,其局部与整体是相似的,所以是一个分形系统。”
康托尔说:“除了有自相似性,还有精细结构。”
本章未完,点击下一页继续阅读。