首页 > 玄幻魔法 > 数学心 > 第四百一十七章 阿诺德用拓扑学证明五次方程无根式解

第四百一十七章 阿诺德用拓扑学证明五次方程无根式解(1/1)

目录
好书推荐: 深渊游戏之超人领主 明日方舟里的咸鱼六星 末世降临:无限升级避难所 零默的失忆人生 唯一练气士 汉道天下 权御群雄 从宝可梦开始的海贼王冒险 风云假城主开局 仙府长生

嚼口香糖,配橙汁或者其他饮料,加浓烈的白酒,感觉一下。

阿诺德给我印象最深的不是他的那些高深数学研究成果—我看不懂,自然也谈不上什么印象,而是他在一般浅层次数学问题上的别出心裁。请允许我举两个例子。其一是三角形垂心都交于一点的证明,这是个古老的平面几何问题。阿诺德竟然用雅可比恒等式来证明。雅可比恒等式可过渡到一个关于李括号的两层嵌套恒等式,那应该就是微分几何的第二比安奇恒等式,是广义相对论的一个要点。阿诺德用雅可比恒等式证明这个平面几何定理,给我们演示了高射炮打蚊子确实比较轻松这一伟大命题。其二是一元五次方程没有有限根式解的证明。一元五次方程没有有限根式解的问题,经拉格朗日的思考、鲁菲尼和阿贝尔等人的工作后由伽罗华用群论系统地证明了,并且由此产生了伽罗华理论。然而,1963年阿诺德竟然想到了用拓扑学的方法加以证明。证明思路基于如下观察和定理。观察是,方程系数绕一个环路回到原点可能会造成多项式方程根的置换。而定理是,两个环路对易式定义的环路会造成根空间里的环路。这样问题就来了,如果根的置换的对易式还是根的置换的话,那代数方程解的公式就必须是嵌套根式的样子。若根的置换的对易式之对易式一直是根的置换,那解的根式表达就必须是无限嵌套的样子。五次方程没有有限根式解由此得到了一个拓扑学角度的证明,思路清晰,比伽罗华理论好懂多了。此两例的详细内容,请参见拙著《惊艳一击》和《云端脚下》。

目录
新书推荐: 魔兽萌宝:妖狐娘亲不好惹 恋上你的宠:狐狸王爷俏王妃 情人眼里出妖怪:月烨 凰惊天下:倾世小妖妃 一念相思起 御狐先生 不死龙尊 神灵仙境 灵魂禁区 乾玄九龙记
返回顶部